220 research outputs found

    Scaling Cosmologies from Duality Twisted Compactifications

    Full text link
    Oscillating moduli fields can support a cosmological scaling solution in the presence of a perfect fluid when the scalar field potential satisfies appropriate conditions. We examine when such conditions arise in higher-dimensional, non-linear sigma-models that are reduced to four dimensions under a generalized Scherk-Schwarz compactification. We show explicitly that scaling behaviour is possible when the higher-dimensional action exhibits a global SL(n,R) or O(2,2) symmetry. These underlying symmetries can be exploited to generate non-trivial scaling solutions when the moduli fields have non-canonical kinetic energy. We also consider the compactification of eleven-dimensional vacuum Einstein gravity on an elliptic twisted torus.Comment: 21 pages, 3 figure

    Software defect prediction: do different classifiers find the same defects?

    Get PDF
    Open Access: This article is distributed under the terms of the Creative Commons Attribution 4.0 International License CC BY 4.0 (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.During the last 10 years, hundreds of different defect prediction models have been published. The performance of the classifiers used in these models is reported to be similar with models rarely performing above the predictive performance ceiling of about 80% recall. We investigate the individual defects that four classifiers predict and analyse the level of prediction uncertainty produced by these classifiers. We perform a sensitivity analysis to compare the performance of Random Forest, Naïve Bayes, RPart and SVM classifiers when predicting defects in NASA, open source and commercial datasets. The defect predictions that each classifier makes is captured in a confusion matrix and the prediction uncertainty of each classifier is compared. Despite similar predictive performance values for these four classifiers, each detects different sets of defects. Some classifiers are more consistent in predicting defects than others. Our results confirm that a unique subset of defects can be detected by specific classifiers. However, while some classifiers are consistent in the predictions they make, other classifiers vary in their predictions. Given our results, we conclude that classifier ensembles with decision-making strategies not based on majority voting are likely to perform best in defect prediction.Peer reviewedFinal Published versio

    Beta, Dipole and Noncommutative Deformations of M-theory Backgrounds with One or More Parameters

    Full text link
    We construct new M-theory solutions starting from those that contain 5 U(1) isometries. We do this by reducing along one of the 5-torus directions, then T-dualizing via the action of an O(4,4) matrix and lifting back to 11-dimensions. The particular T-duality transformation is a sequence of O(2,2) transformations embedded in O(4,4), where the action of each O(2,2) gives a Lunin-Maldacena deformation in 10-dimensions. We find general formulas for the metric and 4-form field of single and multiparameter deformed solutions, when the 4-form of the initial 11-dimensional background has at most one leg along the 5-torus. All the deformation terms in the new solutions are given in terms of subdeterminants of a 5x5 matrix, which represents the metric on the 5-torus. We apply these results to several M-theory backgrounds of the type AdS_r x X^{11-r}. By appropriate choices of the T-duality and reduction directions we obtain analogues of beta, dipole and noncommutative deformations. We also provide formulas for backgrounds with only 3 or 4 U(1) isometries and study a case, for which our assumption for the 4-form field is violated.Comment: v2:minor corrections, v3:small improvements, v4:conclusions expanded, to appear in Class. Quant. Gra

    A Massive S-duality in 4 dimensions

    Full text link
    We reduce the Type IIA supergravity theory with a generalized Scherk-Schwarz ansatz that exploits the scaling symmetry of the dilaton, the metric and the NS 2-form field. The resulting theory is a new massive, gauged supergravity theory in four dimensions with a massive 2-form field and a massive 1-form field. We show that this theory is S-dual to a theory with a massive vector field and a massive 2-form field, which are dual to the massive 2-form and 1-form fields in the original theory, respectively. The S-dual theory is shown to arise from a Scherk-Schwarz reduction of the heterotic theory. Hence we establish a massive, S-duality type relation between the IIA theory and the heterotic theory in four dimensions. We also show that the Lagrangian for the new four dimensional theory can be put in the most general form of a D=4, N=4 gauged Lagrangian found by Schon and Weidner, in which (part of) the SL(2) group has been gauged.Comment: 20 pages, references adde

    Strings on the deformed T^{1,1}: giant magnon and single spike solutions

    Full text link
    In this paper we find giant magnon and single spike string solutions in a sector of the gamma-deformed conifold. We examine the dispersion relations and find a behavior analogous to the undeformed case. The transcendental functional relations between the conserved charges are shifted by certain gamma-dependent term. The latter is proportional to the total momentum and thus qualitatively different from known cases.Comment: 35 pages, no figure

    Lectures on Nongeometric Flux Compactifications

    Full text link
    These notes present a pedagogical review of nongeometric flux compactifications. We begin by reviewing well-known geometric flux compactifications in Type II string theory, and argue that one must include nongeometric "fluxes" in order to have a superpotential which is invariant under T-duality. Additionally, we discuss some elementary aspects of the worldsheet description of nongeometric backgrounds. This review is based on lectures given at the 2007 RTN Winter School at CERN.Comment: 31 pages, JHEP

    Semi-classical Strings in Sasaki-Einstein Manifolds

    Full text link
    We find point-like and classical string solutions on the AdS_5 x X^5, where X^5 are the 5-dimensional Sasaki-Einstein manifolds Ypq and Lpqr. The number of acceptable solutions is limited drastically in order to satisfy the constraints on the parameters and coordinates of the manifolds. The energy of the solutions depends on the parameters of the Sasaki-Einstein manifolds and on the conserved momenta transcendentally. A discussion on BPS solutions is presented as well.Comment: 34 pages, 9 figure
    corecore